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An extension of the technique of analogue simulation to the treatment of quan- 
tum mechanical systems, based on an analogue variant of the method of 
stochastic quantization, is reported. The analogue stochastic quantization 
(ASQ) technique is introduced by application to the quantum harmonic 
oscillator, a particularly simple system for which all the answers are already 
known. ASQ measurements of the lowest eigenvalues and eigenfunctions of the 
latter system are presented and compared with theoretical predictions. The 
future potential of the ASQ technique in relation to some more complicated 
quantum systems of topical interest is discussed. 
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1. I N T R O D U C T I O N  

Experiments on noise-driven analogue electronic circuits can provide a 
useful method for finding approximate solutions of stochastic nonlinear 
differential equations. The technique, together with its advantages and 
disadvantages, has been reviewed in detail elsewhere2; briefly, it is as 
follows. An analogue electronic circuit is constructed to model the system 
of interest, and is then driven by additive or multiplicative, colored or 
quasiwhite noise from an external noise generator. The response of the 
circuit is then analyzed by a digital data processor so as to extract the 
statistical quantities of interest, such as distribution functions, correlation 
times, power spectra, or moments. Usually, such experiments are relatively 
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quick and straightforward, both in design and execution, and lead to 
results that have a typical accuracy of a few percent. This remains true even 
in the cases of extremely complicated multidimensional systems for which 
analytic solutions are not available and where digital simulation techniques 
tend to be greedy of central processor time, even on very large computers. 

All of the analogue modeling schemes of this kind reported to date 3 
have, to our knowledge, been confined to classical systems or to quantum 
systems under conditions such that they are governed by classical 
equations. In what follows, we report a major extension of the technique, 
enabling it to be applied to quantum mechanical systems. The method 
exploits the close relationship that exists between the Langevin/Fokker- 
Planck and Schr/Sdinger equations. (3'4) Thus, the quantum properties of a 
given system can be deduced from studies of the time evolution of the 
associated Langevin equation, which, in turn, can be modeled by the elec- 
tronic analogue technique under discussion. 

In Section 2 we review briefly the theoretical basis of the stochastic 
quantization technique and discuss how it can be applied to a particularly 
simple example of a quantum system, the one-dimensional quantum har- 
monic oscillator. The experimental application of the analogue modeling 
technique to this system is described in Section 3. The results obtained by 
this method are presented in Section 4, where they are compared with exact 
theoretical predictions. In Section 5 we discuss future possibilities and, in 
particular, the feasibility and utility of applying analogue stochastic 
quantization (ASQ) modeling to more complicated quantum mechanical 
systems for which exact analytic solutions are not available. 

2. S T O C H A S T I C  Q U A N T I Z A T I O N  

Stochastic quantization (5'6) is an alternative to the more usual Monte 
Carlo method, (7-1~ which uses a relaxation technique such as the 
Metropolis algorithm (H) to evaluate imaginary-time Feynman path 
integrals, by mapping a d-dimensional quantum system onto a (d+ 1)- 
dimensional classical system and evaluating equilibrium properties of the 
latter. In its simplest f o r m ,  (4) for a single degree of freedom x, the technique 
starts from a stochastic differential equation of the Langevin type 

~W 
2 = - x - - 3  - + ~ ( t )  (1) 

3 The successful modeling of quantum systems by mechanical analogue simulation should also 
be noted: see, for example, He and Maynard/2~ 
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with ( q ( t ) q ( t ' ) ) =  a 6 ( t - t ' ) .  The equilibrium density Peq ~e-2W/~ can be 
used to reduce the Fokker-Planck equation for the nonequilibrium density 
p(x, ~ 1/2 t )  Peq O(x, t) to an imaginary-time SchrSdinger equation of the form 

- - -  = H ~ ,  ( 2 )  
8 t  

where 

ff 0 z 

H -  2 Ox 2 + V(x) (3) 

with V(x) and W(x) related by the Ricatti equation (4) 

1 (__~_xx~ z lc32W 
V = ~-~ 2 8x 2 (4) 

As a consequence, one can readily show that if x = xo at time t = 0, the 
probability that the solution of (1) takes the value x at time t is 

p(x, tlxo)=r ~ r176162 (5) 
m=0 r 

where Ore(X) is an eigenstate of H with eigenvalue )~m" Thus, the statistical 
quantity p(x, t l Xo) can yield information about the quantum mechanical 
system described by H. This analysis is readily generalized to systems with 
more than one degree of freedom. In this way, one can compute both 
ground-state and low-lying excited state properties of a d-dimensional 
quantum mechanical system from a knowledge of the nonequilibrium 
properties of a d-dimensional stochastic system. At the present time, a 
variety of hybrid techniques (s'6) are available for implementing the above 
formalism on a digital computer. However, to our knowledge, the only 
work to date on stochastic quantization using analogue simulation is our 
own preliminary ASQ work outlined below. 

As well as probing the zero-temperature limit, the above technique can 
be used to determine finite-temperature properties through the relation 

Z(/~)= f dx p(x, f l lx)=  Z e -~m~ (6) 
m=0 

where Z is the partition function of the single-particle quantum mechanical 
system at inverse temperature ft. Thus, from the nonequilibrium properties 
of a stochastic differential equation, one obtains information about the 
finite-temperature equilibrium properties of a quantum mechanical system. 
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This provides a complementary technique to a better known Monte Carlo 
method, (~~ which makes use of an isomorphism between a quantum 
statistical system and a classical "polymer" chain of N masses coupled by 
harmonic springs. The isomorphism is exact only in the limit N ~ 0% but, 
provided the temperature is not too low, accurate results can be still 
obtained for small values of N. 

The results presented in this paper are aimed at checking the feasibility 
of the technique by applying it to a simple quantum mechanical system of 
known properties. The system we examine is a simple harmonic quantum 
oscillator of frequency o) c, for which Eqs. (1) and (3) become 

and 

2= -eocx+q(t  ) (7) 

(7" ~ 2  2 X 2 (J)c (Dc 
H =  2c3x 2 r a 2 2 (8) 

respectively. The introduction of dimensionless variables 

y = (0),,/0") 1/2 x ,  "C = ~or 

yields for Eq. ( 5 )  

P(Y,~IY)= _1/2e y2 ~ AmHm(y ) 2  e-,,~ 
m = O  

(9) 

where A m -- (2mm!) ~ and Hm(y ) is a Hermite polynomial of degree m. The 
right-hand side of this equation can be summed (~2) to yield 

p(y, r l y ) =  [~(1 --e-Z~)]-X/Zexp [y(1 -- e-~)]  2 
1 - e - 2 ~  

(10) 

In what follows, we present experimental measurements of the coarse- 
grained density # defined by 

/)(Y, z ' tY)= .  (ZlY) -1  fy+zJy/2 dy' p(y', +IY)  
~y - zly/2 

(11) 

where Ay ~ 1. Results are presented for finite r only, where one expects that 
the difference between p and fi will vanish as Ay --* 0. This behavior is to be 
contrasted with the situation at r = 0, where Eq. (5) shows that, no matter 
how small Ay, fi(y, 0] y) = 1, whereas p(y, 01 Y) does not exist. 
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3. ANALOGUE MODELING OF THE QUANTUM HARMONIC 
OSCILLATOR 

The Ornstein-Uhlenbeck process (7) was simulated by the bandwidth 
limiting of quasiwhite Gaussian noise, using the single, active, low-pass 
filter shown schematically in Fig. l. A simple analysis of the circuit yields 

% 2  = - c o o x  + rl(t ) 

where we have put T1 = rl C and co c = r l / r :  to yield the desired time-scaled 
Langevin equation. 

The stochastic driving force t/(t) was obtained from a Wandel & 
Goltermann model RG1 noise generator, which produces an accurately 
Gaussian noise voltage with a fiat frequency response over the band range 
0-100 kHz. Before application to the circuit, the noise voltage was filtered 
through another low-pass filter. This ensured that the noise had a 
well-defined correlation time zn with a correlation function 

O It1 - t21 
(r/(tl) q(t2)) = - -  exp 

~'n Tn 

For reasons discussed elsewhere, (t'13) the Langevin equation was time 
scaled in the usual manner. This leads to the scaled noise intensity 

where ( V~ > is the mean square noise voltage, measured at the input to the 
circuit. Taking into account the time scaling, the dimensionless variables 
introduced in Section 2 become 

y = (coc/2D) 1/2 x ,  Z --= (COc/r l )  t 

The factor of 2 appearing in the denominator of y results from the non- 
equivalence of a with D. This can be shown by considering the correlation 
function in the white noise limit, in which case we obtain 

a = 2D 

(to data- 
processor) 

Fig. 1. Schematic diagram of the electronic circuit used to model Eq. (7). 
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The parameter values co, and D were chosen so as to optimize x(t) for the 
circuit, the digitizer, and the data analysis procedure described below. 

The computation of r t l y) assumes the Markovianicity of the 
Langevin process. This is a valid assumption for the discretized version of 
x(t) if z, ~ ~1. For  this reason typical values of z, and T1 used where 
20/~sec and 5 msec, respectively, thus yielding a ratio of zi/r, ~ 250. 

Additional digital circuitry was incorporated to initialize the output of 
the circuit to a given value and to produce a triggering pulse for the com- 
puter used for data processing. This enabled the circuit to relax through the 
entire state space of interest during data acquisition. The typical mode of 
operation was as follows. First, a voltage pulse was sent to the circuit 
initializing its output to some large positive or negative value by charging 
the capacitor C. Synchronized with the trailing edge of this pulse, at the 
instant when the system was effectively "released," a trigger pulse was 
applied to the digitizer of a Nicolet 1180 or 1280 data processor, thus 
initiating a data acquisition sweep; immediately on completion of the 
sweep, the acquired x(t) was analyzed, as described below. The sign of the 
charging pulses applied to C was alternately positive and negative, so as to 
cover the whole range of interest of x. 

The successive sweeps of x(t), typical examples of which are shown in 
Fig. 2, were analyzed to extract the coarse-grained return-time density 
~(x, t lx). The procedure for doing so was as follows. First the input x(t) 
was digitized in both x and t, with 12-bit precision in x and into 256 or 
more time channels, separated by a sample interval typically of 80/~sec. 
The discretized x(t) was placed in a block of memory for analysis. A num- 
ber of different algorithms were investigated for extraction of p(x, t]x), but 
the most successful of them in practice, used for the results to be presented 
below, also turned out to be the simplest. The accessible range of positive 
and negative x was considered to be divided into 128 intervals, and each of 
these was examined in turn. For  a particular interval, the program 
searched from t = 0 over increasing time until a count was found in that 
interval; the corresponding value of t was then regarded as the zero of time 
for that interval. Next, the program searched for returns to the interval; on 
each occasion that a return was found, it incremented the appropriate 
address in the memory block where the return-time density function for 
that value of x was being constructed. The search ceased after 128 sample 
intervals from the time origin had been examined. The next value of x was 
processed in a like manner, and so on, thus building up the required 
~(x, t lx) as a 128 x 128 point array. The next sweep of x(t) was then 
digitized, and the whole process repeated. The sequence continued until the 
statistical quality of p(x, t lx) was considered to be satisfactory. 

In actual fact, the procedure for the choice of time origin was slightly 
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Fig. 2. Two examples of realizations of x(t) from the output of the circuit in Fig. 1: (a) with 
an initializing pulse to make x positive; (b)with an initializing pulse to make x negative. 

more complicated than described above. Alternatively, between pairs of 
positively and negatively initiated sweeps, the origin was chosen as either 
the first or the second occasion when x(t)  was found to be within the inter- 
val of interest. This procedure eliminated what would otherwise have been 
a biasing effect arising from the fact that the circuit operates continuously, 
rather than being "released" in turn at each chosen value of x. 

Densities produced in this way required normalization to take account 
of the fact that, in general, the number of realizations of ~(x, t Ix) varied 
with x (because there were fewer of them at large values of x, where, 
on average, the system tended to drift rapidly toward decreasing ]x]. 
Consequently, throughout the data acquisition sequence, a record was 
maintained of the number of realizations that had been analyzed for each 
value of x, thus creating a 128-point realization density in a separate 
memory block. Finally, the acquired ~(x, t Lx) was normalized by dividing 
it, for each value of t, by the realization density. 
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4. EXPERIMENTAL RESULTS A N D  C O M P A R I S O N  
WITH THEORY 

The results presented below serve to demonstrate two important 
points. First, the analogue simulation yields accurate measurements of the 
return density p(y, z l Y); this is demonstrated by comparing experimental 
results for p(y, r l Y) with the theoretical prediction for p(y, ~[ y) given in 
Eq. (10). Second, quantum mechanical properties can be extracted from the 
experimental results; this is demonstrated by extracting the lower lying 
eigenfunctions and eigenvalues directly from the experimental data. 

In order to compare experimental measurements of ~5 with the 
theoretical prediction for p the experimental data are scaled such that, over 
the range of y and r investigated, the volumes under the two curves are 
identical. Figure 3 shows the experimentally measured ~5(y, v l Y), obtained 
from 10 5 realizations of x(t). Figures 4 and 5 show sections through this 
two-dimensional density taken at constant ~ and constant y, respectively. 
In these figures the dashed lines are experimental results for r and, for 
comparison, the solid lines show the theoretical values for p given by 
Eq. (10). These results show that, even for the shortest times illustrated, 
the differences between ~ and p are negligibly small. This agreement is 

Fig. 3. The coarse-grained return-time density fi(y, z ly), defined by Eq. (11), as measured 
experimentally for the circuit of Fig. 1. 
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Fig. 4. Plots of the return density p(y, fly) versus y for fixed values of z: (a) ~ =0.0833; 
(b) 0.208; (c) 0.333; (d) 0.458. The solid curves represent the exact theory [Eq. (10)] and the 
dashed curves represent the experimental measurements of ~6(y, f ly)  for the circuit of Fig. 1. 

also evident in Fig. 6, which shows the "part i t ion function" Z ( r ) =  
dy p(y, T I y) in t roduced in Eq. (6). In this figure the experimental and 

theoretical curves are a lmost  indistinguishable. These results clearly 
demonst ra te  that  analogue simulation provides an accurate technique for 
determinat ion of  the return density p(y, "el y). We now demonst ra te  that  

208 
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Fig. 5. Plots of the return density p(y, zf y) versus r for fixed values of y: (a} y = 0.1; (b) 1.I; 
(c) 2.1; (d)3.1. The solid curves represent the exact theory [Eq. (10)] and the dashed curves 
represent the experimental measurements fi(y, f ly) for the circuit of Fig. 1. 
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Fig. 6. The integrated density Z(~) plotted against z. The exact theory (solid curve) obtained 
by integration of (10) is compared to the experimentally measured curve (dashed) obtained by 
summing over y the coarse-grained return-time density p(y,  "r I Y) shown in Fig. 3. The two 
curves are almost coincident, 

quantum mechanical quantities such as energy level separations and eigen- 
functions can be extracted from the experimental measurements of r 

From the general expression (6), given the close agreement established 
above between p and ~, one can in principle obtain estimates for all 
of the level separations )~m = )~m/h~176 between the lowest excited states 
and the ground state of the quantum system by fitting the function 
l+Y'.~=aexp(--~mZ ) to the experimental data for Z(z). Here we have 
noted that in the mapping defined by Eqs. (1)-(4), the energy origin is 

522  

Z ('r..) 

3.12 

Fig. 7. 

1"01 ~ ~  ' ' 
0 2"07 4'15 

% 

The (normaLized) experimental data of Fig. 6 (dashed curve) compared to a fit of (12) 
at large ~ (solid curve) using ~1 = 1.05 and ~2 = 1.93, 
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necessarily chosen such that the ground-state energy of the quantum 
mechanical system is zero. In practice, an accurate fit to the experimental 
data is only possible at large times, where the exponentials exp(-)T, ,z)  are 
well separated. For  this reason only the lower ~m are readily accessible. 
Figure 7 shows the result of a chi-squared fit of the function 

f ( z )  = 1 + exp( --~1 T) + exp(-)~2z) (12) 

(solid line) to the experimental measurements (dashed line) of Z(r )  at large 
z. The optimum values of ).1 and /~2 obtained from the fit are 

,~1 = 1.05 and "~2 = 1.93 

These are to be compared with the exact results of 1 and 2, respectively. 
Given estimates for the eigenvalues '~m, the eigenfunctions themselves 

can readily be determined. Since ~o is identically zero, the general 
expression (6) yields 

Lt p(y, z] y)=~b~(y) (13) 

Thus, the cross section at the largest value of v shown in Fig. 3 is a plot of 
the ground-state intensity ~b02(y) of a quantum harmonic oscillator. F r o m  

Fig. 8. The measured return-time density of Fig. 3, replotted according to Eq. (14): the 
stationary density at large r has been subtracted, and all points have been multiplied by 
exp(~,r), using the experimentally derived value of ~1 = 1.05. Under these conditions, as 
discussed in the text, the cross section in y tends toward the spatial intensity ~b~ as z ~ ~. 
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Eq. (2), one notes that the spatial intensity of the first excited state is 
obtained from the function 

P(~)(Y, ~1 Y)= [exp(2jz)]  [p(y, r[ y ) -  ~b~(y)] (14) 

which satisfies 

Lt p~l)(y, ~1 y) = eke(y) 
T ~ O O  

The spatial intensities of successively higher eigenstates can in 
principle be obtained from a sequence of such subtractions. In practice, 
accurate results are obtained only for the low-lying states, since errors 
arising from successive subtractions are compounded. Figure 8 shows 
experimental results for the quantity p(l ) (y ,~ty  ) obtained using the 
estimate /~1=1.05. The cross section at large ~ clearly reflects the 
well-known spatial intensity of the first excited state of a quantum 
oscillator. 

Finally, o n e  notes that if T is much less than the inverse level 
separation, the summation on the right-hand side of Eq. (6) can be 
replaced by an integral to yield 

Z(v) = d)~ N(~) exp(--,~v) (15) 

30 i i i i i I I i i i i i = ~ 

2(I:} 

10 

3 ~ 

1 . . . .  , , I ' 0'3- . . . . . .  
0 " 0 3  0-1 

"c. 

A log-log plot of the integrated experimental density Z(z) versus ~ for small times r. Fig. 9. 
From the gradient (-0.97, which ~ - 1 )  of the line fitted at small ~, it may be inferred 
(correctly) that the density of states for the quantum harmonic oscillator at large energies is 
independent of energy. 
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where N(,~) is the density of states at 2. If N(,~) varies like ~P, then this 
yields for small 

Z ( z ) ~ r  -(e+l) (16) 

Figure 9 shows a log-log plot of the experimentally measured Z(z) 
versus z. For small ~, the measured slope (the line on the graph) of this is 
-0.97, yielding a value for P of 0.03. This derived value of P-~ 0 reflects 
the well-known constant coarse grained density of states of the quantum 
harmonic oscillator. 

5. D I S C U S S I O N  

The aim of this paper has been to demonstrate the feasibility of 
simulating quantum mechanical systems by the use of analogue electronic 
circuits. The above results clearly demonstrate that, from the long-time 
behavior of the return density p, the energies and eigenfunctions of the 
low-lying states are readily accessible. Futhermore, from the behavior of p 
at short times, the density of states N(2) can be extracted. In this initial 
investigation, we deliberately chose to examine the simplest of quantum 
mechanical systems. Having used this to establish the technique, we now 
envisage extending the method to more complex problems. 

First one notes that it is relatively straightforward to extend the above 
simulation to encompass other single-degree-of-freedom systems whose 
quantum mechanical potential V(x) is a polynomial in x, because in such 
cases the Riccatti equation (4) can easily be inverted to yield W(x) for a 
given V(x). The resulting Langevin equation will in general be a nonlinear 
stochastic equation with no exact analytic solution. 

Second, by coupling together d electronic circuits of the kind discussed 
in this paper, one can extend the simulations to d-dimensional quantum 
mechanical systems. 

Finally, it should also be possible to extend the technique to systems 
with complex quantum mechanical potentials, as follows. For a given V(x) 
one can invert the Riccatti equation numerically and hence construct a 
numerical solution for the force term f(x)= -OW/gx appearing in the 
Langevin equation (1). The force f(x) can then be written directly onto an 
EPROM and inserted into the analogue circuit. (14) 

We are currently aiming to use the latter version of the technique to 
examine the properties of disordered and self-similar structures. Examples 
of the latter are percolating structures near the percolation threshold 
where, at wavelengths less than the correlation length, the eigenstates are 
fractons (15) whose density of states varies with energy E as N(E)~ E (3- 2)/2, 
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with 3 the spectral dimensionality. The analysis leading from Eq. (15) to 
Eq. (16) shows that  the ASQ technique is ideally suited to the deter- 
minat ion of spectral dimensionalities, because the experimentally accessible 
quant i ty  Z(z)  yields 3 immediately th rough  the relation Z(z)  ~ z-a/2 

6. C O N C L U S I O N  

We have demonst ra ted  that  the ASQ technique can provide an 
accurate (to a few percent) description of the quan tum harmonic  oscillator; 
and we have shown how it can readily be extended to encompass  other  
quan tum systems as well. There is reason to believe that  ASQ will prove a 
useful adjunct to more  convent ional  methods  of  studying a variety of  
complex quan tum mechanical  systems of topical interest. 
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